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The internal structure, stress state, and possible for-
mation mechanisms of the unique Tunka Rift has been
discussed in many works [1–4 and others]. It is note-
worthy that this structure is located in the transitional
zone and the rift-type features are least manifested here
as compared with other similar structures of the Baikal
rift zone [5]. In such an intricate geodynamic setting,
the knowledge of the fault structure of elements of the
Earth’s crust is crucial for deciphering their tectonic
history. The results of experimental studies, which are
recently often used in the analysis of structural systems
developing under different conditions of stress, contrib-
ute much to the solution of the issue mentioned above
[6–9 and others]. This communication presents the
results of structural and tectonophysical studies in the
Tunka Rift, which made it possible to compile a new
map of its fault–block structure supplemented with data
on the kinematics and geometry of many mapped frac-
tures (Fig. 1). Thus, the presented map has both theoret-
ical significance for geodynamic interpretations and a
practical implication for the coordination of earth-
quakes and reconstruction of their focal mechanisms.

The history of the study of faults in the Tunka rifto-
genic basin and adjacent territory is limited by state
geological mapping (scale 1 : 200 000) in the 1970s and
schematic maps of active faults compiled by Sherman

 

et al.

 

 [1], Lukina [3], and Levi [10], which were mainly
based on topographic analysis. In most other works, the
fault structure of the Tunka Rift is rather schematic. In
contrast to previous reconstructions, we compiled a
new map of the fault–block structure using data on
structural observations of fault zones and jointing, the
lineament analysis of topographic maps, maps of the
state geological survey, the above-mentioned schematic
maps, and some other schemes. In total, 270 observa-
tion points, including 65 points confined to Cenozoic
sediments, have been documented in the study area.

These field data formed the major basis for defining
new and confirming known faults. The mapped frac-
tures are active, which is evident from their manifesta-
tion in the relief and registered displacements of mark-
ers in Upper Pleistocene and Holocene sediments.

The analysis of the map (Fig. 1) shows that the
fault–block structure of the study area is determined by
fractures with four different directions: sublatitudinal
(80

 

°

 

–100

 

°

 

), northeastern (30

 

°

 

–70

 

°

 

), northwestern
(290

 

°

 

–330

 

°

 

), and submeridional (350

 

°

 

–10

 

°

 

). The sub-
meridional fractures are least widespread (Fig. 2a).
Detailed analysis of fault orientations in the study area
reveals a certain trend in their distribution. In the rifto-
genic basin, the main role belongs to northeastern and
sublatitudinal fractures (Fig. 2b). The third insignifi-
cant maximum in the rose diagram characterizes the
northwestern fractures in areas located mainly between
basins. Beyond the Tunka Basin, northwestern faults
predominate, while the northeastern fractures are sub-
ordinate (Fig. 2c). The northeastern faults are most
common in the Khamar-Daban Range and near Lake
Baikal. The abundance of sublatitudinal faults is similar
both beyond and inside the basin. Thus, the fault–block
structure of the study area reflects the superposition of
the Tunka Rift over an older structure that represents
the northwestern branch of the Sayan–Baikal foldbelt.
The Tunka Rift formation was probably accompanied
by faulting along the sublatitudinal and northeastern
directions, whereas the northwestern fractures were
activated. It should be noted that most of the faults are
confined to areas located between basins where the pre-
ceding fractures were preserved and new fractures were
superimposed. As a result, these crustal blocks were the
most crumbled.

The comparison of modeling data [6–9] with the
real structural setting indicates that the fault structure of
the Tunka Rift is a result of oblique extension. This
conclusion agrees well with the known data on the
NW–SE direction of the axis of regional extensional
stresses. Experimental works show that under orthogo-
nal rifting, when the angle 

 

α

 

 between the vector of
extensional stresses and rift axis is equal to 90

 

°

 

,
destructive zones are represented by a single system of
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normal faults, the orientation of which follows the
strike of the newly forming structure [6, 8]. The scatter
of fault azimuths progressively increases with the 

 

α

 

decrease and significantly changes when 

 

α

 

 = 45

 

°

 

 and
30

 

°

 

. At 

 

α

 

 = 45

 

°

 

, the models show the formation of a sta-
ble fault system, the orientation of which deviates from
the rift orientation by 25

 

°

 

–30

 

°

 

. As applied to the Tunka
Rift, such a fault system corresponds to the maximum
of the northeastern strike in Fig. 2b. At 

 

α

 

 = 30

 

°

 

 or less,
the third fault system appears perpendicular to the rift
system and plays a significant role in the infrastructure
of the zone, which is of a strike-slip structure in the con-
sidered case. It is best manifested in the central block of
the model [6]. As is evident from the structural study,
submeridional faults play a minor role in the internal
structure of the Tunka Rift. Thus, one can suggest that
the shear deformations noted in the Tunka Rift, as well
as the echelon-shaped basins and interbasin links that
constitute its internal structure, resulted from the
oblique NW–SE-oriented extension, which played the
leading role, at least at the stage of initiation and active
development of the southwestern flank of the Baikal rift
zone.
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Fig. 2.

 

 Rose diagrams of fault strikes for (a) the entire study area; (b) the basin, regional faults bordering the basin, and interbasin
links; and (c) areas located beyond the rift valley.


